
REGULAR ARTICLE

A Bohmian total potential view to quantum effects. II: decay
of temporarily trapped states
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Abstract Formation, persistence and decay of temporar-

ily trapped states, the time-dependent generalization of

resonances, are analysed within the framework of Bohmian

Mechanics. More specifically, the so-called Bohm’s total

potential, the sum of classical plus Bohm’s quantum

potential, is used. It is found that both formation and decay

are triggered by the frequency in the oscillations of the

total potential. These oscillations have been studied at the

specific locations where the classical potential displays

maxima, i.e. the ‘walls’ temporarily capturing the system’s

density. Our main result is that the total potential oscilla-

tion frequency is solely dependent on the steepness of the

classical potential ramp and, surprisingly, independent of

the classical barrier height and width, well depth and width,

collision energy or wavepacket width.

Keywords Bohmian mechanics � Resonances �
Quantum dynamics

1 Introduction

Resonances in the microscopic world, i.e. temporarily

trapped, or metastable, atomic or molecular states, are

manifest, among other phenomena, in radiation–matter

spectra, photochemistry, particle physics, laser cooling of

atomic species, gas-surface processes and chemical reac-

tions [1–14]. Wave interference is at the heart of resonances.

For instance, the radiation–matter wave interference, lead-

ing to Einstein’s resonance condition, is readily evidenced,

formally, in the time dependent perturbation theory for-

mulation of radiation–matter interaction [1]. However, the

particle–particle wave interactions leading to resonances, in

both particle physics and chemical reactions, are more in-

tringuing. One finds signatures of resonances, as bumps in

cross sections, or even spikes and other structures in reac-

tion probabilities [4]. But one does not have available a

simple ab initio treatment leading to resonances; rather, they

are built-in in the basic mathematical structure of the

Schrödinger equation. One of the major difficulties is the

need of singling out a proper set of adiabatic, or nearly

adiabatic, motions, so that one can construct effective

potential energy diagrams that, eventually, lead to reso-

nances via an energy match between a forcing projectile’s

energy, and quasi-bound target energy levels supported by

local effective potential minima [7].

The characterization of resonances is mostly done under

a time-independent picture, even though the main concept is

that of decay or, actually, delay time. This is because this

decay time may be determined by a resonance width in

energy space; the larger the width the shorter the lifetime of
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M. F. González � A. Aguilar-Mogas � X. Giménez
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the resonance. Within the time-independent version of the

Schrödinger equation, this characterization may be done by

means of a complex, but otherwise definite, energy. Its real

part establishes the position of the resonance, in the energy

continuum, whereas the complex part denotes the resonance

lifetime [3].

However, the time-independent resonance scheme

appears somewhat incomplete since time-independent

technology is actually used for the characterization of an

intrinsic time-dependent (TD) process. An obvious way to

circumvent this is to use the time-dependent, wavepacket

(WP) approach to quantum dynamics. A widespread proce-

dure is to Fourier transform the numerical outcome of

wavepacket propagation, down in the asymptotic region, and

then extract the fixed-energy quantities so as to recover the

standard theoretical framework [3]. But it appears that some

of the wavepacket time-dependent features are irreversibly

mixed up with this Fourier transform. For instance, it is not

easy to analyse the role of wavepacket width, as well as

wavepacket spreading, under the time-independent picture.

The above shortcomings prompted notorious attempts on

the characterization of resonances under a complete time-

dependent, wavepacket framework. Noteworthy in this

regard are restricted norm techniques or the method of the

resonant time correlation function [14, 15]. The present work

has been devised to provide yet further material on the time-

dependent characterization of temporarily trapped states.

These states might be considered as energy-averaged gen-

eralizations of resonances, within a simple time-dependent

picture. In this work, Bohm’s total potential, the sum of

classical plus Bohm’s quantum potential, is used. This means

a shifting from Schrödinger’s to Bohm’s view of quantum

mechanics [15–20]. The latter is intrinsically time-depen-

dent, and well-known to provide a classical-like descriptive

framework for the occurrence of quantum phenomena.

This work is thus a continuation of a previous study by

some of the authors, aimed at viewing quantum effects, in

molecular processes, under the perspective of Bohm’s total

potential [21]. The motivation for such study arises from

the absence of knowledge, in the previous literature, on the

behaviour of Bohm’s total potential associated to standard

molecular processes. The ultimate interest is gaining

qualitative insight into classical-like descriptions of purely

quantum phenomena.

Previous studies by some of the authors have shown that

decay processes, under a time-dependent, wavepacket

framework, proceed through step-wise increases of the TD

density in the decay region [21]. Moreover, a correlation

between this density increase outside the barrier, and an

oscillating time dependence of the total potential, at the

classical barrier outermost edge, is found. The underlying,

classical-like description of dynamics, linked to Bohm’s

total potential, means that decay may be described in terms

of a deterministic, oscillating pattern displayed by the time

dependence of the total potential. The issue is then about

finding out the origin of the total potential oscillations as a

function of time. Preliminary work by the authors [21]

linked these oscillations to the wavepacket’s density time-

dependence (an obvious conclusion since the density is the

time-dependent object in the total potential definition).

However, it is not clear what is the origin of both density

and total potential time oscillations. In more specific

words, one may state the question as follows: which are the

wavepacket, and/or the classical potential features, deter-

mining the frequency and amplitude of the density, and

total potential oscillations?

In this paper, we have undertaken a comprehensive

numerical study aimed at finding out an explanation for

both the frequency and amplitude in the total potential

oscillations. The main result is that the total potential

oscillation frequency is only dependent on the steepness of

the external potential ramp, as well as independent of the

remainder potential energy features, or the wavepacket

characteristics.

The remainder of this paper is organized as follows.

Sect. 3 presents the method for solving the TD Schrödinger

equation and the total potential, along with a description of

the numerical implementation, as well as a description of

the properties of the wavepacket being checked to find out

the origin of the oscillations in the total potential. Results

are shown in Sect. 3. Finally Sect. 4 provides the main

conclusions and a summary.

2 Theory and numerical implementation

The Madelung, de Broglie, Bohm (MdBB) hydrodynamic

view of quantum mechanics (QM) is readily obtained by

expressing the amplitude density as w = R � exp (iS/�h),

R(x,t) and S(x,t) being real functions of the coordinates and

time, and substituting afterwards for the standard time-

dependent Schrödinger equation. A coupled pair of dif-

ferential equations results for R (whose square results to be

the system’s density) and the phase S having a structure

that closely resembles that for the characteristic equations

for the hydrodynamics of a fluid system [16, 17].

oS

ot
þ ðrSÞ2

2m
� �h2

2m

r2R

R
þ V ¼ 0 ð1aÞ

oR2

ot
þr � R2rS

m

� �
¼ 0 ð1bÞ

Furthermore, the so-called Bohm’s guidance relation,

rS = p, being p the linear momentum, makes explicit

the strict formal equivalence between Eq. (1a) and the

classical Hamilton–Jacobi equation. However, the resulting
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dynamics is only classical-like, and not purely classical,

owing to the fact that the quantity.

Q ¼ � �h2

2m

r2R

R
ð2Þ

plays the role of a state-dependent (via R), non-local

quantum potential Q. When added to the classical potential

V, it defines a new quantity acting formally as a potential in

(1a), the total potential:

W ¼ V � �h2

2m

r2R

R
ð3Þ

Within this view, one thus switches the focus from

kinetic, since the quantum potential has its origin in

the quantum kinetic operator, to potential energy. The

prospective advantage is that motion is then regarded as

classical-like, under the influence, however, of a non-

classical, yet cumbersome potential, constructed from the

guiding w-field.

Calculations have been performed from a TD wave-

packet propagation, which is obtained by solving the TD

Schrödinger equation. Since the total potential is obtained

from the classical potential plus the quantum term, this

means that we just need the square root of the wavefunc-

tion density. Our procedure, having been described

elsewhere, is based on a Discrete-Variable Representation,

DVR, [22, 23] which leads to an especially simple time

propagation algorithm. In matrix form, it is written as

yðtÞ ¼ LTtLj0 ð4Þ

where y(t) is the vector, of dimension N, containing the

total wavefunction at each grid position, at time t, t is

a diagonal matrix with diagonal elements e�iEjt=�h,

j = 1,…,N, L is the eigenvectors matrix associated with the

DVR-stationary basis change, whereas j0 is the vector

corresponding to the initial wavepacket, with components

corresponding to its value at each grid position.

3 The computation of Bohm’s total potential

The computation of the quantum potential requires evalu-

ating the density R, as well as its second spatial

derivatives, at any time increment. However, the TD

Schrödinger equation just provides the density. Neverthe-

less, an advantage of the present formulation for the

wavefunction time propagation is that, after suitable

transformations, it leads to a simple algorithm for the

computation of the quantum potential (and thus the total

potential) at any time increment, just by doing simple

matrix algebra. To show this, it is worth starting with the

operator expression for the present propagation algorithm

for the wave function:

wðx; tÞ ¼ ÂðtÞu0ðxÞ ð5Þ

where, obviously, the matrix form of ÂðtÞ, in terms of

expression (4), is given by

AðtÞ ¼ LTtL ð6Þ

denoting B ¼ Â�Â, the squared modulus of the time

propagation operator, and performing the quotient in the

quantum potential expression, one gets, after some algebra,

in atomic units

Qðx; tÞ¼� 1

2m

r2Rðx; tÞ
Rðx; tÞ ¼

1

8m
R�4 ou�0

ox
Bu0þu�0B

ou0

ox

� �2

� 1

4m
R�2 o2u�0

ox2
Bu0þ2

ou�0
ox

B
ou0

ox
þu�0B

o2u0

ox2

� �

ð7Þ

thus yielding the final working expression for the computation

of the quantum potential, in terms of quantities obtained

during the time propagation stage. This procedure has the

advantage of linking the accuracy in the calculation of the

wavefunction spatial derivatives to the intrinsic accuracy of

the DVR method. This accuracy should be superior to the

estimation of the derivatives by any finite difference method.

4 Results

4.1 Correlation between density and total potential

Previous studies by the authors [24] have shown a correla-

tion between the density increase after the barrier, i.e. the

start of the ‘leaking’ region, and the oscillating time

dependence of the total potential at the classical barrier

outermost edge. In order to fully characterize this result, we

have made additional calculations to study the total potential

oscillations and the probability distribution decay outside

the well region. To this end, the system so far considered

consists of a particle time evolving in the classical potential

shown in Fig. 1. This potential is built by adding an Eckart

barrier, centred at a given distance, to a repulsive wall

potential, so that it simulates a bonding potential that,

according to the system’s total energy, has the ability to

decay through tunnelling. More specifically, this potential is

given by the expression.

VðxÞ ¼ V0Exp � 2ðx� aÞ
b

� �
� 2Exp �ðx� aÞ

b

� �

þ V1Sech
x� c

d

h i2

ð8Þ

with V0 = 0.125, V1 = 0.4, a = 1.0, b = 0.4, c = 2.5,

d = 0.05. The collision corresponds to an initial coherent

wavepacket

Theor Chem Acc (2009) 123:51–58 53

123



u0ðxÞ ¼
2c
p

� �1=4

exp �c x� x0ð Þ2þip0 x� x0ð Þ
n o

ð9Þ

having, p0 = 10, m = 367.22 (one-fifth of the proton mass,

a quantity taken to ensure purely quantum conditions) and

c = 30, with initial position x0 = 1.0. Since the barrier

height is 0.4 a.u. and the wavepacket central kinetic energy

is p2
0=2m ¼ 0:1362 a:u:; one may easily assume that any

transmission event takes place via tunnelling.

Figure 2 shows four time snapshots of wavepacket time

dependence, corresponding to several stages of its oscil-

lation between classical turning points inside the well

region. Notice (a) the strongly oscillating pattern for the

whole time interval; (b) the presence, at t = 99, of an

additional effective barrier centred in the well region; (c)

the formation of a barrier much higher than the classical, at

t = 109, and (d) the absence of it at t = 228. In addition, it

is interesting to note the small tail of the wavepacket,

leaking from the well region, even before the first oscil-

lation actually ends. This is a distinctive wavepacket

signature of decay, being presented in more detail in Fig. 3.

It displays the time dependence of the total potential, at the

location where the classical potential displays its barrier

maximum, along with the density time dependence, at a

point immediately after the barrier. The classical potential

barrier height, a constant as a function of time, is also

shown for reference. The first important feature shown in

this figure is the oscillating character of the total potential

time dependence. The classical-like picture of dynamics,

linked to the total potential, yields a fairly simple mecha-

nism for resonances: whenever the total potential displays

their maxima, the system gets trapped inside the well

region, whereas the time ranges where the total potential

attain minimum values, the system is allowed to leak from

the well region (thus defining proper ‘window times’ for

decay).

It is interesting to notice that the total potential minima

occur at ca. 0, 85 and 175 time units. These minima cor-

relate with density maxima taking place at ca. 40, 130 and

225 time units, these delays being explained by the fact that

the outgoing density is measured at a point well outside the

barrier region and, importantly, the density maxima corre-

spond to optimal constructive interference of the outgoing

density. According to the above data, the time distance

between successive decay maxima correspond to 90 and 95

time units. This reflects the decreasing mean energy of the

leaking wavepacket, at each resonance decay window time,

a signature of reflected-wavepacket slowdown resulting

from tunneling transmission [25].

Fig. 1 Potential energy profile used in the present work. Bohm’s total

potential time oscillations have been studied at the position depicted

by P = 2.5 a.u. Atomic units are used throughout

t = 46 t = 99

t = 109 t = 226

x

x

Fig. 2 Wavepacket (bold
dashed line), total potential

(light line) snapshots at four

selected time instances, for the

classical potential (solid)

depicted in Fig. 1

54 Theor Chem Acc (2009) 123:51–58

123



4.2 Factors determining the amplitude and frequency

of total potential oscillations

Once a general view of the relationship between the total

potential and the transmitted density has been obtained for

our present system, the study of a family of wavepacket

time evolutions, where several of the characterizing

parameters of both the wavefunction and the external

potential have been systematically changed, is now

considered.

Two kinds of quantities have been considered in this

section. First, those linked to the wavepacket, namely its

central momentum p0, its width c, as well as its initial

position x0. Second, quantities corresponding to the clas-

sical external potential, i.e. the barrier width and height, the

well depth and width, and finally the steepness of the

potential slope, i.e. how fast the barrier develops as a

function of position.

Interestingly (and counter-intuitively), all the above

quantities, except the latest, the potential ramp steepness,

leave unaffected the total potential oscillation frequency.

This statement, leading to our main result of the present

work, is analysed in more detail below. Conversely, the

whole set of wavepacket, external classical potential

properties are found to act on the oscillation amplitude.

The overall trend is complex, even though it can be

ascribed to known features of wavepacket dynamics. As an

illustration, Fig. 4 shows the density change as the barrier

width is varied, along with the change in total potential as

the well depth is systematically increased.

Panel (a) of Fig. 4 shows the density R(x,t), as a function

of the barrier width, for three selected time instances of the

reference density time dependence shown in Fig. 3. These

selected R(x,t) points roughly correlate with the density

maxima of Fig. 3. The trend for all cases, as the barrier

width is increased, is that decaying R(x,t) diminishes,

monotonically, as the barrier width is increased. This is an

expected result, since in the present work all transmission

takes place through tunnelling, and it is well-known that

the tunnelling amplitude, for each fixed-energy component

of the wavepacket, gets more depleted as the barrier width

is larger [26].

A bit more complex is the trend shown in Fig. 4, panel

(b). The total potential, for two selected time instances (of

the reference time-dependence shown in Fig. 3), first

increases (oscillates), and then decreases (in both cases), as

the well depth is increased. This behaviour shows how

difficult it is to realize, at this point, deeper physical

insight. The wavepacket total energy is lowered as the well

depth is increased, so that the transmitted density should be

monotonically inhibited as the well depth is larger. How-

ever, this translates into a non-monotonic behaviour for the

total potential.

After varying the parameters characterizing the initial

wavepacket and the external potential, the key features

governing the total potential are still missing. Some tracks

have been found when varying the width of the barrier or

its height, two properties which are related to the steep-

ness of the external potential ramp. Hence, we have

undertaken the study of how this steepness affects the

total potential. This means changing substantially the

potential energy parameters, so that, for the sake of sim-

plicity, we have considered other potential profiles than

that of Fig. 1. The aim has been to discard the potential

profile from any feature not being totally relevant in our

study.

Fig. 3 Total potential (continuous line), density (dashed line) and

classical potential barrier height (dotted line), as a function of time.

Total and classical potentials correspond to the location of the

classical barrier, whereas the density corresponds to a position

immediately after the barrier, outside the well region. Some of the

potential parameters of Fig. 1 have been slightly changed, in order to

get a more clear picture: V0 = 0.32, and d = 0.114

Fig. 4 a Density R(x,t) values, for three selected locations (t = 45,

135 and 225 time units of Fig. 3), as a function of the barrier

width. b Total potential values, for two selected locations (t = 111

and 225 time units of Fig. 3), as a function of the inner region well

depth
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To this end, Fig. 5, shows the total potential oscillations

for an initial coherent wavepacket collision, against a linear

potential ramp given by the simple linear term V(x) = mx,

using different values of the slope m. The data, i.e. the total

potential time dependence, have been collected at a point

right before the start of the potential ramp, since in the

present case the ‘‘exit’’ point taken in the potential profile of

Fig. 1 is meaningless. It is found that, as the slope m of the

potential ramp is changed, the frequency in the total potential

time dependence changes, but the number of oscillations

does not change. On the other hand, the oscillation amplitude

increases as m is increased.

Finally, Fig. 6 shows the total potential versus time for a

wavepacket collision against potential ramps described by

simple power functions, V(x) = xn, calculated at a point

right before the start of the power-law potential slope. The

only change between different ramps is in the power-law

degree, n. As a general feature, it is found again that the

oscillation frequency changes with n. However, contrary to

the linear case, for the time interval so far explored, the

number of oscillations is found to change with n.

The specific analysis, concerning the number of oscil-

lations, may be pushed a little bit farther. It starts with the

n = 2 case. Here the total potential displays four maxima

and four minima, as a function of time. Next, the maximum

displayed by the figure at ca. t = 65, is taken as a reference

point. This is done since it shows a particular shape, which

is reproduced in the remaining cases. Before the reference

Fig. 5 Total potential for a

collision against a linear

potential y = mx, by a coherent

wave packet having p0 = 13,

mparticle = 1836.1/5 and c = 20,

with initial position r0 = -1,

for different values of the

potential slope m. The data have

been taken at a point right

before the start of the potential

ramp. a m = 0 (solid), 1

(dashed); b m = 2 (solid), 3

(dashed); c m = 4 (solid), 5

(dashed); and d m = 6 (solid),

infinite (vertical ramp) (dashed
line)

Fig. 6 Total potential time

dependence, for an initial

coherent wave packet collision

against potential ramps defined

according to the polynomial

equations V(x) = xn, for several

values of n. The data have been

collected at a point right before

the origin of the potential ramps
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maximum, the total potential displays 2 maxima, or crests.

For n = 3, the number of maxima increases to 4, whereas

for n = 4 this number increases to 6 and for n = 5 it

increases to 8. Using higher order polynomials we have

verified, numerically, that a simple relation between the

number of maxima Nmax before the reference maximum, is

related with the power-law degree n, for n C 2 by the

expression Nmax = 2(n - 1).

5 Summary and conclusions

The present work is devoted to resonance decay in the

context of Bohmian mechanics. In particular, a specific

potential energy profile, leading to the formation of a long-

living complex, has been considered. The time dependence

of a gaussian wavepacket, leading to resonance decay, has

been compared to the time dependence of Bohm’s total

potential. It is found that long-time oscillations in the total

potential, at the exit point for resonance decay, actually

trigger the system leaking towards the scattering region.

Our main goal has been, consequently, the characterization

of these oscillations in the total potential, as a function of the

key parameters governing the collision outcome. In particular,

the total potential oscillation frequency and amplitude have

been studied as a function of wavepacket features, namely the

wp central momentum and width, as well as a function of the

potential profile characteristics, namely the potential well

depth and width, the barrier height and width, as well as the

potential ramp steepness.

A main result of the present study is that the total

potential oscillation frequency is independent of the

wavepacket central momentum p0, the wavepacket width c,

as well as the classical potential features such as the barrier

width and height, and the well depth the well width. Inter-

estingly, it is solely the steepness of the potential ramp that

feature which is able to change the oscillation frequency,

and consequently, the only feature setting the clock times at

which the system decays at sufficiently long collision times.

The remaining properties of the system change the oscil-

lation amplitude, i.e. how much the system is decaying at

the ‘‘clock times’’ set by the frequency.

Consequently, we are in a position of providing, under

the bohmian mechanics framework, a deterministic mech-

anism for resonance decay (or, more generally, decay of

temporarily trapped densities):

a. Decay takes place owing to a time-dependent oscillation

of the total potential barrier, which is characterized by a

nearly constant frequency. This frequency is dependent

solely on the steepness of the classical potential slope

leading to the outermost barrier; the higher the frequency

the steeper the potential.

b. The remaining system properties determine the amount

of decay, i.e. how much of the density gets off the

trapping region, at the regular instances set by the total

potential oscillation frequency.

We have found, in addition, that the radiated backward

oscillations are related to the power-law degree of the

potential ramp, which could be used as a deterministic,

semiquantitative tool in order to understand how and when

resonances decay.
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120:10961. doi:10.1063/1.1747869

22. Colbert DT, Miller WH (1992) J Chem Phys 96:1982. doi:

10.1063/1.462100

23. Neuhauser D, Baer M (1989) J Chem Phys 90:4351. doi:

10.1063/1.456646
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